Skip to contents
-
BCI BCI.env
- Barro Colorado Island Tree Counts
-
CCorA() biplot(<CCorA>)
- Canonical Correlation Analysis
-
MDSaddpoints() dist2xy()
- Add New Points to NMDS ordination
-
MDSrotate()
- Rotate First MDS Dimension Parallel to an External Variable
-
MOStest() plot(<MOStest>) fieller.MOStest() profile(<MOStest>) confint(<MOStest>)
- Mitchell-Olds and Shaw Test for the Location of Quadratic Extreme
-
RsquareAdj(<default>) RsquareAdj(<rda>) RsquareAdj(<cca>)
- Adjusted R-square
-
SSarrhenius() SSgleason() SSgitay() SSlomolino()
- Self-Starting nls Species-Area Models
-
add1(<cca>) drop1(<cca>)
- Add or Drop Single Terms to a Constrained Ordination Model
-
adipart() hiersimu()
- Additive Diversity Partitioning and Hierarchical Null Model Testing
-
adonis2()
- Permutational Multivariate Analysis of Variance Using Distance Matrices
-
anosim()
- Analysis of Similarities
-
anova(<cca>) permutest(<cca>)
- Permutation Test for Constrained Correspondence Analysis, Redundancy Analysis and Constrained Analysis of Principal Coordinates
-
avgdist()
- Averaged Subsampled Dissimilarity Matrices
-
beals() swan()
- Beals Smoothing and Degree of Absence
-
betadisper() anova(<betadisper>) scores(<betadisper>) eigenvals(<betadisper>) plot(<betadisper>) boxplot(<betadisper>) TukeyHSD(<betadisper>) print(<betadisper>) betadistances()
- Multivariate homogeneity of groups dispersions (variances)
-
betadiver() plot(<betadiver>) scores(<betadiver>)
- Indices of beta Diversity
-
bgdispersal()
- Coefficients of Biogeographical Dispersal Direction
-
bioenv(<default>) bioenv(<formula>) bioenvdist()
- Best Subset of Environmental Variables with Maximum (Rank) Correlation with Community Dissimilarities
-
biplot(<rda>)
- PCA biplot
-
cascadeKM() cIndexKM() plot(<cascadeKM>)
- K-means partitioning using a range of values of K
-
cca(<formula>) rda(<formula>) cca(<default>) rda(<default>) ca() pca()
- [Partial] [Constrained] Correspondence Analysis and Redundancy Analysis
-
ordConstrained() ordiYbar() model.frame(<cca>) model.matrix(<cca>) weights(<cca>)
- Result Object from Constrained Ordination
-
clamtest() summary(<clamtest>) plot(<clamtest>)
- Multinomial Species Classification Method (CLAM)
-
commsim() make.commsim() print(<commsim>)
- Create an Object for Null Model Algorithms
-
contribdiv() plot(<contribdiv>)
- Contribution Diversity Approach
-
dbrda() capscale() pco()
- Principal Coordinates Analysis and [Partial] Distance-based Redundancy Analysis
-
decorana() plot(<decorana>) text(<decorana>) points(<decorana>) scores(<decorana>) downweight()
- Detrended Correspondence Analysis and Basic Reciprocal Averaging
-
decostand() wisconsin() decobackstand()
- Standardization Methods for Community Ecology
-
designdist() designdist2() chaodist()
- Design your own Dissimilarities
-
deviance(<cca>) extractAIC(<cca>)
- Statistics Resembling Deviance and AIC for Constrained Ordination
-
dispindmorisita()
- Morisita index of intraspecific aggregation
-
dispweight() gdispweight() summary(<dispweight>)
- Dispersion-based weighting of species counts
-
distconnected() no.shared()
- Connectedness of Dissimilarities
-
diversity() simpson.unb() fisher.alpha() specnumber()
- Ecological Diversity Indices
-
dune dune.env
- Vegetation and Environment in Dutch Dune Meadows.
-
dune.taxon dune.phylodis
- Taxonomic Classification and Phylogeny of Dune Meadow Species
-
eigenvals() summary(<eigenvals>)
- Extract Eigenvalues from an Ordination Object
-
envfit(<default>) envfit(<formula>) plot(<envfit>) scores(<envfit>) vectorfit() factorfit()
- Fits an Environmental Vector or Factor onto an Ordination
-
eventstar()
- Scale Parameter at the Minimum of the Tsallis Evenness Profile
-
fisherfit() prestonfit() prestondistr() plot(<prestonfit>) lines(<prestonfit>) veiledspec() as.fisher() plot(<fisher>) as.preston() plot(<preston>) lines(<preston>)
- Fit Fisher's Logseries and Preston's Lognormal Model to Abundance Data
-
goodness(<cca>) inertcomp() spenvcor() intersetcor() vif.cca() alias(<cca>)
- Diagnostic Tools for [Constrained] Ordination (CCA, RDA, DCA, CA, PCA)
-
goodness(<metaMDS>) stressplot(<default>)
- Goodness of Fit and Shepard Plot for Nonmetric Multidimensional Scaling
-
indpower()
- Indicator Power of Species
-
hatvalues(<cca>) rstandard(<cca>) rstudent(<cca>) cooks.distance(<cca>) influence(<cca>) sigma(<cca>) vcov(<cca>) SSD(<cca>) qr(<cca>) df.residual(<cca>)
- Linear Model Diagnostics for Constrained Ordination
-
isomap() isomapdist() summary(<isomap>) plot(<isomap>)
- Isometric Feature Mapping Ordination
-
kendall.global() kendall.post()
- Kendall coefficient of concordance
-
linestack()
- Plots One-dimensional Diagrams without Overwriting Labels
-
make.cepnames()
- Abbreviates a Two-Part Botanical or Zoological Latin Name into Character String
-
mantel() mantel.partial() summary(<mantel>)
- Mantel and Partial Mantel Tests for Dissimilarity Matrices
-
mantel.correlog() plot(<mantel.correlog>)
- Mantel Correlogram
-
metaMDS() plot(<metaMDS>) points(<metaMDS>) text(<metaMDS>) scores(<metaMDS>) metaMDSdist() metaMDSiter() initMDS() postMDS() metaMDSredist()
- Nonmetric Multidimensional Scaling with Stable Solution from Random Starts, Axis Scaling and Species Scores
-
mite mite.env mite.pcnm mite.xy
- Oribatid Mite Data with Explanatory Variables
-
monoMDS() scores(<monoMDS>) plot(<monoMDS>) points(<monoMDS>) text(<monoMDS>)
- Global and Local Non-metric Multidimensional Scaling and Linear and Hybrid Scaling
-
mrpp() meandist() summary(<mrpp>) summary(<meandist>) plot(<meandist>)
- Multi Response Permutation Procedure and Mean Dissimilarity Matrix
-
mso() msoplot()
- Functions for performing and displaying a spatial partitioning of cca or rda results
-
multipart()
- Multiplicative Diversity Partitioning
-
nestedchecker() nestedn0() nesteddisc() nestedtemp() nestednodf() nestedbetasor() nestedbetajac() plot(<nestedtemp>) plot(<nestednodf>)
- Nestedness Indices for Communities of Islands or Patches
-
nobs(<cca>)
- Extract the Number of Observations from a vegan Fit.
-
nullmodel() print(<nullmodel>) simulate(<nullmodel>) update(<nullmodel>) print(<simmat>) smbind()
- Null Model and Simulation
-
oecosimu() summary(<oecosimu>) as.ts(<oecosimu>) toCoda(<oecosimu>)
- Evaluate Statistics with Null Models of Biological Communities
-
optspace()
- optspace: algorithm for matrix reconstruction from a partially revealed set
-
ordiArrowTextXY() ordiArrowMul()
- Support Functions for Drawing Vectors
-
ordiarrows() ordisegments() ordigrid()
- Add Arrows and Line Segments to Ordination Diagrams
-
ordihull() ordiellipse() ordibar() ordispider() ordicluster() summary(<ordihull>) summary(<ordiellipse>) ordiareatest() summary(<ordiareatest>)
- Display Groups or Factor Levels in Ordination Diagrams
-
ordilabel()
- Add Text on Non-transparent Label to an Ordination Plot.
-
ordiplot() points(<ordiplot>) text(<ordiplot>) identify(<ordiplot>)
- Alternative plot and identify Functions for Ordination
-
ordipointlabel() plot(<ordipointlabel>)
- Ordination Plots with Points and Optimized Locations for Text
-
ordistep() ordiR2step()
- Choose a Model by Permutation Tests in Constrained Ordination
-
ordisurf(<default>) ordisurf(<formula>) calibrate(<ordisurf>) plot(<ordisurf>)
- Fit and Plot Smooth Surfaces of Variables on Ordination.
-
orditorp()
- Add Text or Points to Ordination Plots
-
ordixyplot()
- Trellis (Lattice) Plots for Ordination
-
pcnm()
- Principal Coordinates of Neighbourhood Matrix
-
permatfull() permatswap() print(<permat>) summary(<permat>) print(<summary.permat>) plot(<permat>) lines(<permat>) as.ts(<permat>) toCoda(<permat>)
- Matrix Permutation Algorithms for Presence-Absence and Count Data
-
permustats() summary(<permustats>) permulattice() densityplot(<permustats>) density(<permustats>) qqnorm(<permustats>) qqmath(<permustats>) boxplot(<permustats>) pairs(<permustats>)
- Extract, Analyse and Display Permutation Results
-
permutations
- Permutation tests in Vegan
-
permutest(<betadisper>)
- Permutation test of multivariate homogeneity of groups dispersions (variances)
-
plot(<cca>) text(<cca>) points(<cca>) scores(<cca>) scores(<rda>) summary(<cca>) labels(<cca>)
- Plot or Extract Results of Constrained Correspondence Analysis or Redundancy Analysis
-
prc() summary(<prc>) plot(<prc>)
- Principal Response Curves for Treatments with Repeated Observations
-
fitted(<cca>) fitted(<capscale>) residuals(<cca>) predict(<cca>) predict(<rda>) predict(<dbrda>) calibrate(<cca>) coef(<cca>) predict(<decorana>)
- Prediction Tools for [Constrained] Ordination (CCA, RDA, DCA, CA, PCA)
-
procrustes() summary(<procrustes>) plot(<procrustes>) points(<procrustes>) text(<procrustes>) lines(<procrustes>) residuals(<procrustes>) fitted(<procrustes>) predict(<procrustes>) protest()
- Procrustes Rotation of Two Configurations and PROTEST
-
pyrifos
- Response of Aquatic Invertebrates to Insecticide Treatment
-
radfit(<default>) rad.null() rad.preempt() rad.lognormal() rad.zipf() rad.zipfbrot() predict(<radline>) plot(<radfit>) plot(<radfit.frame>) plot(<radline>) radlattice() lines(<radfit>) points(<radfit>) as.rad() plot(<rad>)
- Rank – Abundance or Dominance / Diversity Models
-
rankindex()
- Compares Dissimilarity Indices for Gradient Detection
-
rarefy() rrarefy() drarefy() rarecurve() rareslope()
- Rarefaction Species Richness
-
raupcrick()
- Raup-Crick Dissimilarity with Unequal Sampling Densities of Species
-
read.cep()
- Reads a CEP (Canoco) data file
-
renyi() plot(<renyi>) renyiaccum() plot(<renyiaccum>) persp(<renyiaccum>)
- Renyi and Hill Diversities and Corresponding Accumulation Curves
-
reorder(<hclust>) rev(<hclust>) scores(<hclust>) cutreeord()
- Reorder a Hierarchical Clustering Tree
-
scores(<default>)
- Get Species or Site Scores from an Ordination
-
screeplot(<cca>) screeplot(<decorana>) screeplot(<prcomp>) screeplot(<princomp>) bstick()
- Screeplots for Ordination Results and Broken Stick Distributions
-
simper() summary(<simper>)
- Similarity Percentages
-
simulate(<rda>)
- Simulate Responses with Gaussian Error or Permuted Residuals for Constrained Ordination
-
sipoo sipoo.map
- Birds in the Archipelago of Sipoo (Sibbo and Borgå)
-
spantree() as.hclust(<spantree>) cophenetic(<spantree>) spandepth() plot(<spantree>) lines(<spantree>)
- Minimum Spanning Tree
-
specaccum() plot(<specaccum>) boxplot(<specaccum>) fitspecaccum() plot(<fitspecaccum>) predict(<specaccum>) predict(<fitspecaccum>) specslope()
- Species Accumulation Curves
-
specpool() estimateR() specpool2vect() poolaccum() estaccumR() summary(<poolaccum>) plot(<poolaccum>)
- Extrapolated Species Richness in a Species Pool
-
`sppscores<-`()
- Add or Replace Species Scores in Distance-Based Ordination
-
stepacross()
- Stepacross as Flexible Shortest Paths or Extended Dissimilarities
-
stressplot(<wcmdscale>)
- Display Ordination Distances Against Observed Distances in Eigenvector Ordinations
-
taxondive() taxa2dist()
- Indices of Taxonomic Diversity and Distinctness
-
tolerance()
- Species tolerances and sample heterogeneities
-
treedive() treeheight() treedist()
- Functional Diversity and Community Distances from Species Trees
-
tsallis() tsallisaccum() persp(<tsallisaccum>)
- Tsallis Diversity and Corresponding Accumulation Curves
-
varechem varespec
- Vegetation and environment in lichen pastures
-
varpart() summary(<varpart>) plot(<varpart>) plot(<varpart234>) showvarparts()
- Partition the Variation of Community Matrix by 2, 3, or 4 Explanatory Matrices
-
as.mcmc.oecosimu() as.mcmc.permat()
- Deprecated Functions in vegan package
-
ordiParseFormula() ordiTerminfo() ordiNAexclude() ordiNApredict() ordiArgAbsorber() centroids.cca() getPermuteMatrix() howHead() pasteCall() veganCovEllipse() veganMahatrans() hierParseFormula() GowerDblcen() addLingoes() addCailliez()
- Internal vegan functions
-
vegan-package vegan
- Community Ecology Package: Ordination, Diversity and Dissimilarities
-
vegdist()
- Dissimilarity Indices for Community Ecologists
-
vegemite() tabasco() coverscale()
- Display Compact Ordered Community Tables
-
wascores() eigengrad() scores(<wascores>)
- Weighted Averages Scores for Species
-
wcmdscale() plot(<wcmdscale>) scores(<wcmdscale>)
- Weighted Classical (Metric) Multidimensional Scaling