Extrapolated Species Richness in a Species Pool
specpool.Rd
The functions estimate the extrapolated species richness in a species
pool, or the number of unobserved species. Function specpool
is based on incidences in sample sites, and gives a single estimate
for a collection of sample sites (matrix). Function estimateR
is based on abundances (counts) on single sample site.
Usage
specpool(x, pool, smallsample = TRUE)
estimateR(x, ...)
specpool2vect(X, index = c("jack1","jack2", "chao", "boot","Species"))
poolaccum(x, permutations = 100, minsize = 3)
estaccumR(x, permutations = 100, parallel = getOption("mc.cores"))
# S3 method for class 'poolaccum'
summary(object, display, alpha = 0.05, ...)
# S3 method for class 'poolaccum'
plot(x, alpha = 0.05, type = c("l","g"), ...)
Arguments
- x
Data frame or matrix with species data or the analysis result for
plot
function.- pool
A vector giving a classification for pooling the sites in the species data. If missing, all sites are pooled together.
- smallsample
Use small sample correction \((N-1)/N\), where \(N\) is the number of sites within the
pool
.- X, object
A
specpool
result object.- index
The selected index of extrapolated richness.
- permutations
Usually an integer giving the number permutations, but can also be a list of control values for the permutations as returned by the function
how
, or a permutation matrix where each row gives the permuted indices.- minsize
Smallest number of sampling units reported.
- parallel
Number of parallel processes or a predefined socket cluster. With
parallel = 1
uses ordinary, non-parallel processing. The parallel processing is done with parallel package.- display
Indices to be displayed.
- alpha
Level of quantiles shown. This proportion will be left outside symmetric limits.
- type
Type of graph produced in
xyplot
.- ...
Other parameters (not used).
Details
Many species will always remain unseen or undetected in a collection of sample plots. The function uses some popular ways of estimating the number of these unseen species and adding them to the observed species richness (Palmer 1990, Colwell & Coddington 1994).
The incidence-based estimates in specpool
use the frequencies
of species in a collection of sites.
In the following, \(S_P\) is the extrapolated richness in a pool,
\(S_0\) is the observed number of species in the
collection, \(a_1\) and \(a_2\) are the number of species
occurring only in one or only in two sites in the collection, \(p_i\)
is the frequency of species \(i\), and \(N\) is the number of
sites in the collection. The variants of extrapolated richness in
specpool
are:
Chao | \(S_P = S_0 + \frac{a_1^2}{2 a_2}\frac{N-1}{N}\) |
Chao bias-corrected | \(S_P = S_0 + \frac{a_1(a_1-1)}{2(a_2+1)} \frac{N-1}{N}\) |
First order jackknife | \(S_P = S_0 + a_1 \frac{N-1}{N}\) |
Second order jackknife | \(S_P = S_0 + a_1 \frac{2N - 3}{N} - a_2 \frac{(N-2)^2}{N (N-1)}\) |
Bootstrap | \(S_P = S_0 + \sum_{i=1}^{S_0} (1 - p_i)^N\) |
specpool
normally uses basic Chao equation, but when there
are no doubletons (\(a2=0\)) it switches to bias-corrected
version. In that case the Chao equation simplifies to
\(S_0 + \frac{1}{2} a_1 (a_1-1) \frac{N-1}{N}\).
The abundance-based estimates in estimateR
use counts
(numbers of individuals) of species in a single site. If called for
a matrix or data frame, the function will give separate estimates
for each site. The two variants of extrapolated richness in
estimateR
are bias-corrected Chao and ACE (O'Hara 2005, Chiu
et al. 2014). The Chao estimate is similar as the bias corrected
one above, but \(a_i\) refers to the number of species with
abundance \(i\) instead of number of sites, and the small-sample
correction is not used. The ACE estimate is defined as:
ACE | \(S_P = S_{abund} + \frac{S_{rare}}{C_{ace}}+ \frac{a_1}{C_{ace}} \gamma^2_{ace}\) |
where | \(C_{ace} = 1 - \frac{a_1}{N_{rare}}\) |
\(\gamma^2_{ace} = \max \left[ \frac{S_{rare} \sum_{i=1}^{10} i(i-1)a_i}{C_{ace} N_{rare} (N_{rare} - 1)}-1, 0 \right]\) |
Here \(a_i\) refers to number of species with abundance \(i\) and \(S_{rare}\) is the number of rare species, \(S_{abund}\) is the number of abundant species, with an arbitrary threshold of abundance 10 for rare species, and \(N_{rare}\) is the number of individuals in rare species.
Functions estimate the standard errors of the estimates. These only
concern the number of added species, and assume that there is no
variance in the observed richness. The equations of standard errors
are too complicated to be reproduced in this help page, but they can
be studied in the R source code of the function and are discussed
in the vignette
that can be read with the
browseVignettes("vegan")
. The standard error are based on the
following sources: Chiu et al. (2014) for the Chao estimates and
Smith and van Belle (1984) for the first-order Jackknife and the
bootstrap (second-order jackknife is still missing). For the
variance estimator of \(S_{ace}\) see O'Hara (2005).
Functions poolaccum
and estaccumR
are similar to
specaccum
, but estimate extrapolated richness indices
of specpool
or estimateR
in addition to number of
species for random ordering of sampling units. Function
specpool
uses presence data and estaccumR
count
data. The functions share summary
and plot
methods. The summary
returns quantile envelopes of
permutations corresponding the given level of alpha
and
standard deviation of permutations for each sample size. NB., these
are not based on standard deviations estimated within specpool
or estimateR
, but they are based on permutations. The
plot
function shows the mean and envelope of permutations
with given alpha
for models. The selection of models can be
restricted and order changes using the display
argument in
summary
or plot
. For configuration of plot
command, see xyplot
.
Value
Function specpool
returns a data frame with entries for
observed richness and each of the indices for each class in
pool
vector. The utility function specpool2vect
maps
the pooled values into a vector giving the value of selected
index
for each original site. Function estimateR
returns the estimates and their standard errors for each
site. Functions poolaccum
and estimateR
return
matrices of permutation results for each richness estimator, the
vector of sample sizes and a table of means
of permutations
for each estimator.
References
Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783–791.
Chiu, C.H., Wang, Y.T., Walther, B.A. & Chao, A. (2014). Improved nonparametric lower bound of species richness via a modified Good-Turing frequency formula. Biometrics 70, 671–682.
Colwell, R.K. & Coddington, J.A. (1994). Estimating terrestrial biodiversity through extrapolation. Phil. Trans. Roy. Soc. London B 345, 101–118.
O'Hara, R.B. (2005). Species richness estimators: how many species can dance on the head of a pin? J. Anim. Ecol. 74, 375–386.
Palmer, M.W. (1990). The estimation of species richness by extrapolation. Ecology 71, 1195–1198.
Smith, E.P & van Belle, G. (1984). Nonparametric estimation of species richness. Biometrics 40, 119–129.
Note
The functions are based on assumption that there is a species pool: The community is closed so that there is a fixed pool size \(S_P\). In general, the functions give only the lower limit of species richness: the real richness is \(S >= S_P\), and there is a consistent bias in the estimates. Even the bias-correction in Chao only reduces the bias, but does not remove it completely (Chiu et al. 2014).
Optional small sample correction was added to specpool
in
vegan 2.2-0. It was not used in the older literature (Chao
1987), but it is recommended recently (Chiu et al. 2014).
Examples
data(dune)
data(dune.env)
pool <- with(dune.env, specpool(dune, Management))
pool
#> Species chao chao.se jack1 jack1.se jack2 boot boot.se n
#> BF 16 17.19048 1.5895675 19.33333 2.211083 19.83333 17.74074 1.646379 3
#> HF 21 21.51429 0.9511693 23.40000 1.876166 22.05000 22.56864 1.821518 5
#> NM 21 22.87500 2.1582871 26.00000 3.291403 25.73333 23.77696 2.300982 6
#> SF 21 29.88889 8.6447967 27.66667 3.496029 31.40000 23.99496 1.850288 6
op <- par(mfrow=c(1,2))
boxplot(specnumber(dune) ~ Management, data = dune.env,
col = "hotpink", border = "cyan3")
boxplot(specnumber(dune)/specpool2vect(pool) ~ Management,
data = dune.env, col = "hotpink", border = "cyan3")
par(op)
data(BCI)
## Accumulation model
pool <- poolaccum(BCI)
summary(pool, display = "chao")
#> $chao
#> N Chao 2.5% 97.5% Std.Dev
#> [1,] 3 162.7319 143.9393 187.5332 11.945606
#> [2,] 4 177.5652 158.5016 196.0885 11.192608
#> [3,] 5 185.6759 164.2696 213.3850 12.877291
#> [4,] 6 191.2801 171.6428 214.8908 12.385474
#> [5,] 7 195.6433 177.0344 226.4467 12.600388
#> [6,] 8 199.8243 180.8158 227.8784 11.678016
#> [7,] 9 204.2709 181.3366 227.9547 11.778603
#> [8,] 10 208.0971 188.7984 237.1717 12.850721
#> [9,] 11 210.7514 190.4101 237.2609 12.710824
#> [10,] 12 212.5455 191.8712 237.9534 12.000344
#> [11,] 13 215.2654 194.8808 239.1741 11.975056
#> [12,] 14 217.4286 199.0328 240.5277 12.123952
#> [13,] 15 219.6550 199.9609 245.6360 11.804799
#> [14,] 16 220.6682 200.4314 241.3243 11.867461
#> [15,] 17 222.6279 202.5397 244.1830 13.137527
#> [16,] 18 224.3636 205.5863 250.2521 12.541136
#> [17,] 19 224.9883 206.7775 251.9407 11.451247
#> [18,] 20 225.9783 208.8084 248.7393 10.281435
#> [19,] 21 227.4685 211.4459 252.0768 11.094347
#> [20,] 22 229.0373 212.1119 250.7617 10.978382
#> [21,] 23 230.4335 213.6481 255.7681 10.703026
#> [22,] 24 231.6720 213.5777 258.8306 11.200376
#> [23,] 25 233.1331 213.8453 262.3925 11.376831
#> [24,] 26 233.1843 214.4064 255.9835 10.419627
#> [25,] 27 234.2276 217.3700 253.9270 9.917935
#> [26,] 28 235.3133 220.2375 254.6652 9.717874
#> [27,] 29 236.2590 221.7516 254.6852 9.836369
#> [28,] 30 236.4171 221.4532 256.8216 10.115269
#> [29,] 31 236.6669 219.9412 264.3588 10.140717
#> [30,] 32 237.3542 221.2701 262.8832 11.005182
#> [31,] 33 237.3841 220.7957 260.9730 11.093535
#> [32,] 34 237.2035 221.3186 263.1168 11.107173
#> [33,] 35 237.7958 222.1835 261.7541 10.943907
#> [34,] 36 237.7037 223.2374 257.9742 9.503201
#> [35,] 37 237.5417 222.5612 257.0841 8.756801
#> [36,] 38 237.8074 222.3610 254.0359 8.615232
#> [37,] 39 237.6095 223.2400 253.6776 8.366448
#> [38,] 40 237.6945 224.5364 252.3392 7.884032
#> [39,] 41 237.8858 225.0594 250.9073 7.342289
#> [40,] 42 238.0273 225.0633 250.0096 7.027352
#> [41,] 43 238.1064 224.7337 249.9578 6.890723
#> [42,] 44 238.0102 225.6088 249.4941 6.454997
#> [43,] 45 237.3579 225.9317 248.5996 5.794307
#> [44,] 46 236.7545 227.3723 248.6117 5.217047
#> [45,] 47 236.9764 227.7084 245.3901 4.497045
#> [46,] 48 237.0667 229.0456 245.3993 3.644490
#> [47,] 49 236.9449 231.3403 245.4082 3.201099
#> [48,] 50 236.3732 236.3732 236.3732 0.000000
#>
#> attr(,"class")
#> [1] "summary.poolaccum"
plot(pool)
## Quantitative model
estimateR(BCI[1:5,])
#> 1 2 3 4 5
#> S.obs 93.000000 84.000000 90.000000 94.000000 101.000000
#> S.chao1 117.473684 117.214286 141.230769 111.550000 136.000000
#> se.chao1 11.583785 15.918953 23.001405 8.919663 15.467344
#> S.ACE 122.848959 117.317307 134.669844 118.729941 137.114088
#> se.ACE 5.736054 5.571998 6.191618 5.367571 5.848474